Rekenfeitje 17 – door Sara Brachten
Niet getekend is niet gerekend!
Een belangrijk onderdeel van het vak rekenen/wiskunde is het oplossen van formele rekenopgaven. Het uiteindelijke doel van rekenen/wiskunde is echter dat leerlingen formele rekenkennis flexibel kunnen toepassen. Voor veel leerlingen blijkt het maken van toepassingsopgaven vaak een hele opgave te zijn. Een rekentekening kan dan uitkomst bieden! Je leest het in dit rekenfeitje.
Rekentekening bij toepassingsopdrachten
Wanneer een leerling vastloopt bij een toepassingsopgave, ligt het probleem vaak bij het verlenen van betekenis. Driekwart van de fouten ontstaat doordat leerlingen niet goed weten welke bewerking zij moeten uitrekenen; ze begrijpen de relaties tussen verschillende actoren en hoeveelheden niet goed (Wong & Ho, 2017). Begrijpen leerlingen bijvoorbeeld dat het totaal berekenen van vijf groepjes van vier leerlingen een vermenigvuldiging is? Of dat ze het verschil kunnen uitrekenen door getallen van elkaar af te trekken? Wanneer een leerling hier niet achter komt, kan de rekentekening, die de bewerking schematisch weergeeft, een handig hulpmiddel zijn (Van Groenestijn, Borghouts & Janssen, 2011).
Criteria van een goede rekentekening
Het maken van een rekentekening helpt leerlingen om het concrete, schematische en abstracte niveau van rekenopgaven met elkaar te verbinden en te begrijpen. Daarmee ondersteunt het de toepassing van de leerstof (Ros, Hickendorff, Keijzer & Van Luit; 2022). Borghouts (2019) geeft je vier handvatten waar een goede rekentekening aan moet voldoen:
- Het is een abstracte weergave van het contextprobleem;
- Uit de tekening wordt helder om welke bewerking het gaat;
- Alle getallen uit de context zijn terug te vinden;
- De tekening helpt je om tot antwoord te komen.
Kunnen jouw leerlingen nog geen tekening maken bij een toepassingsopgave? Leer ze het aan door hier expliciet aandacht aan te besteden. Vooral leerlingen met rekenproblemen profiteren van directe instructie op het uitrekenen van toepassingsopgaven in een concrete én symbolische representatie (NRO, 2023). Beredeneer hardop denkend hoe je de situatie met symbolen weer kunt geven. Terwijl je de denkstappen hardop modelt, schrijf je mee op het bord.
Een praktische tip: het kan heel helpend zijn om klassenafspraken te maken over de rekentekening. Laat de leerlingen bijvoorbeeld altijd cirkels tekenen, zodat ze niet elke les veel tijd kwijt zijn aan het tekenen van appels en peren.
Dus, ga je aan de slag met toepassingsopgaven? Onthoud dan: ‘Niet getekend, is niet gerekend!’
Versterken van het rekenonderwijs
Meer lezen over het versterken van het rekenonderwijs bij jou op school, neem dan een kijkje op onze themapagina!
Rekenfeitjes
Het vakgebied rekenen-wiskunde is enorm groot. Voor leraren kan het dan ook een uitdaging zijn om een goede rekenles te geven. Welke didactiek pas je in welke leerlijn toe? Wat zegt wetenschappelijk onderzoek eigenlijk over leren rekenen in de verschillende domeinen? Met deze rekenfeitjes geven we jou als leraar – kort maar krachtig – wat extra bagage mee. Zodat je in jouw rekenles goed beslagen ten ijs komt.
Rekencongres
17 maart 2026
‘Een doorgaande lijn in het rekenonderwijs’
Een stevige doorgaande lijn in het rekenonderwijs is essentieel om ontwikkeling voor alle leerlingen zo optimaal mogelijk te laten verlopen. Toch blijkt in de praktijk dat die lijn vaak versnipperd is en dat daardoor minder leerlingen het 1S-niveau behalen. Tijdens het congres krijg je concrete handreikingen en adviezen die je in jouw school kunt benutten.
Ondersteuning van Expertis
Heb je vragen over (de verbetering van) het rekenonderwijs? Neem gerust contact op met onderwijsadviseur Sara Brachten, via 06 – 26 24 78 14 of sara.brachten@expertis.nl
Meer lezen?
Meer lezen over hoe we samen met scholen werken aan passend rekenonderwijs voor alle leerlingen?
Bronnen:
- Borghouts, C. (2019). Hoe leer je een goede rekentekening maken? En waarom is dat belangrijk? Panama Conferentie. Geraadpleegd op 26 november 2025, van https://panamaconferentie.sites.uu.nl/wp-content/uploads/sites/22/2019/03/Hoe-leer-je-een-goede-rekentekening-maken.-En-waarom-is-dat-belangrijk..pdf
- Groenestijn, M. van, Borghouts, C., & Janssen, C. (2012). Protocol Ernstige RekenWiskunde-problemen en Dyscalculie BAO, SBO, SO. Assen: Van Gorcum.
- Kennisrotonde (2023). Wat zijn effectieve manieren om kinderen aan te leren de juiste kale som uit een redactiesom te halen? (1e update) (KR.1452).
- Ros, B., Hickendorff, M., Keijzer, R., & van Luit, H. (2022). Leer ze rekenen: Praktische inzichten uit onderzoek voor leraren basisonderwijs. Didactief / Ten Brink Uitgevers.
- Wong, T. T.-Y., & Ho, C. S.-H. (2017). Component processes in arithmetic word-problem solving and their correlates. Journal of Educational Psychology, 109, 520-531.
